Image Segmentation and Recognition
نویسندگان
چکیده
Image segmentation refers to segmenting or dividing an image which corresponds to objects or different parts of an object. The segmentation is carried out using K-means clustering algorithm, which is a fast and efficient way to segment an image. K-means is one of the most widely used algorithm. We have implemented a color based image segmentation using Kmeans clustering technique. The K-means algorithm is an iterative technique used to partition image into K clusters. It improves the process of segmentation with respect to both time and quality. After segmentation of the image, Edge Reocgnition in an image is done,which refers to the recognition of the edges separately of the image. Edge recognition is carried out using Sobel Filter, which is used to detect edges based on applying a horizontal and vertical filter in sequence. In this project, Both filters are applied to the image and summed to form the final result.
منابع مشابه
A Pixon-based Image Segmentation Method Considering Textural Characteristics of Image
Image segmentation is an essential and critical process in image processing and pattern recognition. In this paper we proposed a textured-based method to segment an input image into regions. In our method an entropy-based textured map of image is extracted, followed by an histogram equalization step to discriminate different regions. Then with the aim of eliminating unnecessary details and achi...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملTraining Set of Data Bin for Small Black Pixels Neighborhood Recognition of Each Boundary
We first describe how to “fuzzify” the estimated binary columns to create a [0,1]-valued column. Werefer to this [0,1] -valued column as the soft segmentation column of the noisy spectrogram column.Similarly to the collection of soft segmentation columns as the soft segmentation image, or simply asthe soft segmentation. The band-dependent posterior probability that the hard segmentation columnv...
متن کاملAutomated Tumor Segmentation Based on Hidden Markov Classifier using Singular Value Decomposition Feature Extraction in Brain MR images
ntroduction: Diagnosing brain tumor is not always easy for doctors, and existence of an assistant that facilitates the interpretation process is an asset in the clinic. Computer vision techniques are devised to aid the clinic in detecting tumors based on a database of tumor c...
متن کاملA Novel Fuzzy-C Means Image Segmentation Model for MRI Brain Tumor Diagnosis
Accurate segmentation of brain tumor plays a key role in the diagnosis of brain tumor. Preset and precise diagnosis of Magnetic Resonance Imaging (MRI) brain tumor is enormously significant for medical analysis. During the last years many methods have been proposed. In this research, a novel fuzzy approach has been proposed to classify a given MRI brain image as normal or cancer label and the i...
متن کامل